West Valley College

MATH004A - Intermediate Calculus

General Information

Author(s): Doonu Barife

Proposal Start: 2017SU

Distance Education Approved: No

TOP Code: 1701.00

TOP Name: Mathematics, General

CIP Code: 27.0101

CIP Name: Mathematics, General

SAM code: E = Non-occupational

Course Control Number: CCC000534425

Curriculum Committee Approval

Date:

03/23/2015

Board of Trustees Approval Date: 04/21/2015

External Review Approval Date: 07/01/2015

Course Description: This course covers vector-valued functions, calculus of functions of

more than one variable, partial derivatives, differentials, gradients, Lagrange Multipliers, multiple integration, line integrals, surface integrals, Green's Theorem, Stokes' Theorem, and the Divergence

theorem.

Submission Rationale:

Faculty Minimum Qualification Requirements

Master Discipline Preferred: Mathematics

Alternate Master Discipline

Preferred:

No value

Bachelors or Associates Discipline No value

Preferred:

Additional Bachelors or Associates

No value

Discipline:

Course Development Options

CourseAllowe 6 rade

Basic Number ptions

Skill of

Status Retakes

Course0 Letter is Grade not methods

a basic skills course.

Allow Students to Gain Credit by Exam/Challenge

Ration Retake Allow
For Policy Students
Credit Description Course
By

_,

Exam/Challenge

No No value value

Transferability & Gen. Ed. Options

Requestransferability

for Status

Transferability

Transfe/Applpleoved

to

both

UC

and

CSU

Units and Hours

Summary

Minimum Total 90 Total 270
Credit Course Student
Units In- Learning
Class Hours

(Contact) Hours

Maxim6m Credit Units Total 180 Faculty
Course Load
Out-

of-Class Hours

Detail

Weekly Student Hours

In Out Class Class

Lectore 10 Hours

Lab -Hours

Activity -Hours

Course Student Hours

Courlse Duration (Weeks)

Hours per unit divisor

Course In-Class (Contact) Hours

Lecture

Lab -

Activity

Tota90

Course Out-of-Class Hours

Lecture

Lab -

Activity

Total 80

Units and Hours - Weekly Specialty Hours

Requisites

Entrance Skills

Skill Content Review

No value No value

Limitations on Enrollment

Limitation Provide Rationale

Prerequisite: MATH 003B or qualifying score on Placement Test and proof of Calculus II

Specifications

Methods ethods

of of

Instruction

Rationale

Instructbecture

Demon**stratiep**ts

are

enhanced

through

the

use

of

tables,

charts,

graphs

and/or

technology

such

graphing

calculators

or

Maple software.		

C. Critical Thinking Express а triple integral over Т as an iterated integral six different ways using different orders of integration. of Rationale

Methods ethods

of

Evaluation

Other A.

Homework assignments

B.

Problem

solving

using

technology

C.

Quizzes

D.

Tests

Equipment

value

Textbooks

Author	Title	Publisher	Date	ISBN
Smith Robert T. & Minton Roland B	Calculus Early Transcendental Function. 4th.	McGraw Hill.	2012.	9780073532325
Stewart, James.	Calculus. 7th.	Brooks Cole.	2012.	9780538497817
Tan, Soo T	Calculus: Early Transcendentals.	Brooks Cole.	2011.	9780534465544

Learning Outcomes and Objectives

Course Objectives

Determine equations of lines and planes.

Demonstrate ability to perform vector operations.

Demonstrate ability to perform analytic geomtry in 3-space.

Find the limit of a function at a point and determine where it is continuous.

Graph surfaces in space (including planes, cylinders and quadratic surfaces).

Solve physical problems involving position, velocity, and acceleration including finding and interpreting the normal and tangential components of acceleration.

Compute evaluate and interpret partial derivative both geometrical and physically.

Write the equation of a tangent plane and a normal line at a point.

Determine differentiability and compute differentials.

Find local extrema and test for saddle points.

Solve constraint problems using Lagrange multipliers.

Compute arc length and curvature.

Evaluate double integrals using rectangular and polar coordinates where appropriate.

Evaluate triple integrals using rectangular, cylindrical and spherical coordinates.

Find and interpret the divergence and curl of a vector field.

Determine whether a vector field is conservative and find its potential function if it is conservative.

Apply a change of variables to integrate functions of multiple variables.

Compute line and surface integrals.

Apply Green's, Stokes', and the Divergence Theorem where appropriate.

CSLOs

Find Expected limits SLO Performance: of, differencoate, and integrate vectorvalued functions. Find Expected limits SLO of, Performance: differentiate, and integrate **functions** of several variables.

Course Outline

Course Outline

A. Vectors and Geometry of Space

A. Vectors in two and three dimensions

1. Geometric and algebraic interpretations

- H. Position, velocity, and acceleration vectors
- I. Normal and tangential components of acceleration
- C. Functions of Several Variables
- A. Domain of functions of several variables
- B. Graphs of functions of two variables
- C. Level curves and surfaces
- D. Limits and continuity of functions of several variables
- E. Partial derivatives and higher-order derivatives of functions of several variables
- F. Linear approximations, differentials and applications
- G. Chain rules for functions of several variables
- H. Implicit differentiation for functions of several variables
- I. Directional derivatives, gradient vectors and properties

- I. Surface and flux integrals for parametric surfaces and surfaces that are graphs of functions
- J. Stokes' theorem
- K. Divergence theorem